Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Nat Commun ; 15(1): 1101, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424441

RESUMO

Human-driven extinction threatens entire lineages across the Tree of Life. Here we assess the conservation status of jawed vertebrate evolutionary history, using three policy-relevant approaches. First, we calculate an index of threat to overall evolutionary history, showing that we expect to lose 86-150 billion years (11-19%) of jawed vertebrate evolutionary history over the next 50-500 years. Second, we rank jawed vertebrate species by their EDGE scores to identify the highest priorities for species-focused conservation of evolutionary history, finding that chondrichthyans, ray-finned fish and testudines rank highest of all jawed vertebrates. Third, we assess the conservation status of jawed vertebrate families. We found that species within monotypic families are more likely to be threatened and more likely to be in decline than other species. We provide a baseline for the status of families at risk of extinction to catalyse conservation action. This work continues a trend of highlighting neglected groups-such as testudines, crocodylians, amphibians and chondrichthyans-as conservation priorities from a phylogenetic perspective.


Assuntos
Conservação dos Recursos Naturais , Tartarugas , Humanos , Animais , Filogenia , Vertebrados/genética , Evolução Biológica , Anfíbios , Biodiversidade
6.
Sci Data ; 10(1): 747, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919303

RESUMO

Species occurrence data are foundational for research, conservation, and science communication, but the limited availability and accessibility of reliable data represents a major obstacle, particularly for insects, which face mounting pressures. We present BeeBDC, a new R package, and a global bee occurrence dataset to address this issue. We combined >18.3 million bee occurrence records from multiple public repositories (GBIF, SCAN, iDigBio, USGS, ALA) and smaller datasets, then standardised, flagged, deduplicated, and cleaned the data using the reproducible BeeBDC R-workflow. Specifically, we harmonised species names (following established global taxonomy), country names, and collection dates and, we added record-level flags for a series of potential quality issues. These data are provided in two formats, "cleaned" and "flagged-but-uncleaned". The BeeBDC package with online documentation provides end users the ability to modify filtering parameters to address their research questions. By publishing reproducible R workflows and globally cleaned datasets, we can increase the accessibility and reliability of downstream analyses. This workflow can be implemented for other taxa to support research and conservation.


Assuntos
Abelhas , Animais , Editoração , Fluxo de Trabalho
8.
Trends Ecol Evol ; 38(12): 1143-1153, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37684131

RESUMO

All aspects of biodiversity research, from taxonomy to conservation, rely on data associated with species names. Effective integration of names across multiple fields is paramount and depends on the coordination and organization of taxonomic data. We assess current efforts and find that even key applications for well-studied taxa still lack commonality in taxonomic information required for integration. We identify essential taxonomic elements from our interoperability assessment to support improved access and integration of taxonomic data. A stronger focus on these elements has the potential to involve taxonomic communities in biodiversity science and overcome broken linkages currently limiting research capacity. We encourage a community effort to democratize taxonomic expertise and language in order to facilitate maximum interoperability and integration.


Assuntos
Biodiversidade
9.
Nat Ecol Evol ; 7(11): 1778-1789, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770546

RESUMO

The worldwide variation in vegetation height is fundamental to the global carbon cycle and central to the functioning of ecosystems and their biodiversity. Geospatially explicit and, ideally, highly resolved information is required to manage terrestrial ecosystems, mitigate climate change and prevent biodiversity loss. Here we present a comprehensive global canopy height map at 10 m ground sampling distance for the year 2020. We have developed a probabilistic deep learning model that fuses sparse height data from the Global Ecosystem Dynamics Investigation (GEDI) space-borne LiDAR mission with dense optical satellite images from Sentinel-2. This model retrieves canopy-top height from Sentinel-2 images anywhere on Earth and quantifies the uncertainty in these estimates. Our approach improves the retrieval of tall canopies with typically high carbon stocks. According to our map, only 5% of the global landmass is covered by trees taller than 30 m. Further, we find that only 34% of these tall canopies are located within protected areas. Thus, the approach can serve ongoing efforts in forest conservation and has the potential to foster advances in climate, carbon and biodiversity modelling.


Assuntos
Ecossistema , Florestas , Árvores , Biodiversidade , Carbono
10.
Trends Genet ; 39(11): 816-829, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37648576

RESUMO

Genetic biodiversity is rapidly gaining attention in global conservation policy. However, for almost all species, conservation relevant, population-level genetic data are lacking, limiting the extent to which genetic diversity can be used for conservation policy and decision-making. Macrogenetics is an emerging discipline that explores the patterns and processes underlying population genetic composition at broad taxonomic and spatial scales by aggregating and reanalyzing thousands of published genetic datasets. Here we argue that focusing macrogenetic tools on conservation needs, or conservation macrogenetics, will enhance decision-making for conservation practice and fill key data gaps for global policy. Conservation macrogenetics provides an empirical basis for better understanding the complexity and resilience of biological systems and, thus, how anthropogenic drivers and policy decisions affect biodiversity.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Genética Populacional , Ecossistema
12.
Nature ; 620(7975): 807-812, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612395

RESUMO

The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Objetivos , Clima Tropical , Nações Unidas , Animais , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Mamíferos , Agricultura Florestal/legislação & jurisprudência , Agricultura Florestal/métodos , Agricultura Florestal/tendências
13.
Nat Ecol Evol ; 7(9): 1362-1372, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550509

RESUMO

As human activities increasingly shape land- and seascapes, understanding human-wildlife interactions is imperative for preserving biodiversity. Habitats are impacted not only by static modifications, such as roads, buildings and other infrastructure, but also by the dynamic movement of people and their vehicles occurring over shorter time scales. Although there is increasing realization that both components of human activity substantially affect wildlife, capturing more dynamic processes in ecological studies has proved challenging. Here we propose a conceptual framework for developing a 'dynamic human footprint' that explicitly incorporates human mobility, providing a key link between anthropogenic stressors and ecological impacts across spatiotemporal scales. Specifically, the dynamic human footprint integrates a range of metrics to fully acknowledge the time-varying nature of human activities and to enable scale-appropriate assessments of their impacts on wildlife behaviour, demography and distributions. We review existing terrestrial and marine human-mobility data products and provide a roadmap for how these could be integrated and extended to enable more comprehensive analyses of human impacts on biodiversity in the Anthropocene.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Meio Ambiente , Atividades Humanas , Meios de Transporte , Planeta Terra , Animais Selvagens , Ecossistema
14.
Proc Natl Acad Sci U S A ; 120(20): e2220672120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37159475

RESUMO

The extraordinary number of species in the tropics when compared to the extra-tropics is probably the most prominent and consistent pattern in biogeography, suggesting that overarching processes regulate this diversity gradient. A major challenge to characterizing which processes are at play relies on quantifying how the frequency and determinants of tropical and extra-tropical speciation, extinction, and dispersal events shaped evolutionary radiations. We address this question by developing and applying spatiotemporal phylogenetic and paleontological models of diversification for tetrapod species incorporating paleoenvironmental variation. Our phylogenetic model results show that area, energy, or species richness did not uniformly affect speciation rates across tetrapods and dispute expectations of a latitudinal gradient in speciation rates. Instead, both neontological and fossil evidence coincide in underscoring the role of extra-tropical extinctions and the outflow of tropical species in shaping biodiversity. These diversification dynamics accurately predict present-day levels of species richness across latitudes and uncover temporal idiosyncrasies but spatial generality across the major tetrapod radiations.


Assuntos
Biodiversidade , Evolução Biológica , Filogenia , Dissidências e Disputas , Fósseis
15.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220232, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37246379

RESUMO

Growing threats to biodiversity demand timely, detailed information on species occurrence, diversity and abundance at large scales. Camera traps (CTs), combined with computer vision models, provide an efficient method to survey species of certain taxa with high spatio-temporal resolution. We test the potential of CTs to close biodiversity knowledge gaps by comparing CT records of terrestrial mammals and birds from the recently released Wildlife Insights platform to publicly available occurrences from many observation types in the Global Biodiversity Information Facility. In locations with CTs, we found they sampled a greater number of days (mean = 133 versus 57 days) and documented additional species (mean increase of 1% of expected mammals). For species with CT data, we found CTs provided novel documentation of their ranges (93% of mammals and 48% of birds). Countries with the largest boost in data coverage were in the historically underrepresented southern hemisphere. Although embargoes increase data providers' willingness to share data, they cause a lag in data availability. Our work shows that the continued collection and mobilization of CT data, especially when combined with data sharing that supports attribution and privacy, has the potential to offer a critical lens into biodiversity. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Assuntos
Animais Selvagens , Biodiversidade , Animais , Mamíferos , Aves , Conhecimento
16.
Trends Ecol Evol ; 38(6): 554-567, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36803985

RESUMO

Species environmental niches are central to ecology, evolution, and global change research, but their characterization and interpretation depend on the spatial scale (specifically, the spatial grain) of their measurement. We find that the spatial grain of niche measurement is usually uninformed by ecological processes and varies by orders of magnitude. We illustrate the consequences of this variation for the volume, position, and shape of niche estimates, and discuss how it interacts with geographic range size, habitat specialization, and environmental heterogeneity. Spatial grain significantly affects the study of niche breadth, environmental suitability, niche evolution, niche tracking, and climate change effects. These and other fields will benefit from a more mechanism-informed choice of spatial grain and cross-grain evaluations that integrate different data sources.


Assuntos
Mudança Climática , Ecossistema
17.
PLoS Biol ; 21(2): e3001991, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36854036

RESUMO

The conservation of evolutionary history has been linked to increased benefits for humanity and can be captured by phylogenetic diversity (PD). The Evolutionarily Distinct and Globally Endangered (EDGE) metric has, since 2007, been used to prioritise threatened species for practical conservation that embody large amounts of evolutionary history. While there have been important research advances since 2007, they have not been adopted in practice because of a lack of consensus in the conservation community. Here, building from an interdisciplinary workshop to update the existing EDGE approach, we present an "EDGE2" protocol that draws on a decade of research and innovation to develop an improved, consistent methodology for prioritising species conservation efforts. Key advances include methods for dealing with uncertainty and accounting for the extinction risk of closely related species. We describe EDGE2 in terms of distinct components to facilitate future revisions to its constituent parts without needing to reconsider the whole. We illustrate EDGE2 by applying it to the world's mammals. As we approach a crossroads for global biodiversity policy, this Consensus View shows how collaboration between academic and applied conservation biologists can guide effective and practical priority-setting to conserve biodiversity.


Assuntos
Biodiversidade , Espécies em Perigo de Extinção , Animais , Filogenia , Evolução Biológica , Ciências Humanas , Mamíferos
18.
Sci Adv ; 8(31): eabp9908, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35921404

RESUMO

Invertebrates constitute the majority of animal species and are critical for ecosystem functioning and services. Nonetheless, global invertebrate biodiversity patterns and their congruences with vertebrates remain largely unknown. We resolve the first high-resolution (~20-km) global diversity map for a major invertebrate clade, ants, using biodiversity informatics, range modeling, and machine learning to synthesize existing knowledge and predict the distribution of undiscovered diversity. We find that ants and different vertebrate groups have distinct features in their patterns of richness and rarity, underscoring the need to consider a diversity of taxa in conservation. However, despite their phylogenetic and physiological divergence, ant distributions are not highly anomalous relative to variation among vertebrate clades. Furthermore, our models predict that rarity centers largely overlap (78%), suggesting that general forces shape endemism patterns across taxa. This raises confidence that conservation of areas important for small-ranged vertebrates will benefit invertebrates while providing a "treasure map" to guide future discovery.


Assuntos
Formigas , Animais , Formigas/fisiologia , Biodiversidade , Ecossistema , Invertebrados , Filogenia , Vertebrados
19.
Sci Data ; 9(1): 391, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810161

RESUMO

The Country Compendium of the Global Register of Introduced and Invasive Species (GRIIS) is a collation of data across 196 individual country checklists of alien species, along with a designation of those species with evidence of impact at a country level. The Compendium provides a baseline for monitoring the distribution and invasion status of all major taxonomic groups, and can be used for the purpose of global analyses of introduced (alien, non-native, exotic) and invasive species (invasive alien species), including regional, single and multi-species taxon assessments and comparisons. It enables exploration of gaps and inferred absences of species across countries, and also provides one means for updating individual GRIIS Checklists. The Country Compendium is, for example, instrumental, along with data on first records of introduction, for assessing and reporting on invasive alien species targets, including for the Convention on Biological Diversity and Sustainable Development Goals. The GRIIS Country Compendium provides a baseline and mechanism for tracking the spread of introduced and invasive alien species across countries globally. Design Type(s) Data integration objective ● Observation design Measurement Type(s) Alien species occurrence ● Evidence of impact invasive alien species assessment objective Technology Type(s) Agent expert ● Data collation Factor Type(s) Geographic location ● Origin / provenance ● Habitat Sample Characteristics - Organism Animalia ● Bacteria ● Chromista ● Fungi ● Plantae ● Protista (Protozoa) ● Viruses Sample Characteristics - Location Global countries.


Assuntos
Biodiversidade , Espécies Introduzidas , Ecossistema , Eucariotos , Fungos , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...